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1. Introhiton

The physics of three-dimensional incompressible fluid flow, as is well known,
is an extremely difficult and not well understood subject. The mathematical
theory of the Navier-Stokes and the Euler equations is incomplete and a detailed
qualitative understanding of the dynamics is, for the most part, lacking.

One focus of recent research which aims at an understanding of key features
of turbulence and of the possible breakdown in r o ..ns of the fluid
equations has been on the motion of vortex filamentsoiee-1f*OMTT otivations
for the study of vortex filaments are the prevalence of thin vortex tubes in
experimentally observed flows, the fact that the Euler equations can be thought
of as an evolution equation for a continuum of interacting vortex filaments, and a
view of turbulence as being characterized by wildly stretching and dissipating
vortex filaments.

A vortex flow problem which has been the subject of interesting laboratory
and numerical experiments is the vortex ring merger problem. In this problem the
evolution over a short interval of time of two initially parallel (or slightly
inclined) co-rotating vortex rings of the same strength is studied. The rings are
observed to come together and')reconnect" ,'m the sense that much of the
vorticity field becomes composed of vortex lines which join the two initially
distinct vortex rings. This merger occurs on a timescale which is much shorter
than that expected from a simple dimensiona-anlysis based on the magnitude of
viscosity and on the vortex ring radius see (3. s)ri< ,:4 )

The numerical computations which are reported in this paper give approxima-
tions to the vortex ring merger flow in an inviscid (infinite Reynolds number)
fluid. Since vortex lines are preserved in time for inviscid, incompressible flow,
there can be no ring merger in our calculations. However, much insight can be
gained into the nature of ring merger from properties of the solution of the
inviscid problem. In particular, it can be seen from our calculations why
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reconnection occurs as rapidly as is observed, and why reconnection can be
q x poextremely high values of the Reynolds number.

fmore fundamental interest is the light these calculations shed on
ut ssible development of singularities in Navier-Stokes and

-Jn. e 1i , models of energy cascades and the generation of small
in ence theory. As we observe in our calculations, the vortex

Ag- igs r ach other very closely, and the vortex cores which form the
adjacm& edges two rings undergo severe strain imposed by the velocity
whic~rms the tr portions of the rings. This strain consists of an extremely
rapid aidal flow along the vortex cores and of a severe contraction in one, but not
the other, direction orthogonal to the axis of the vortex tube. The result is two
very close, very thin, vortex sheets.

As we argue in the concluding section of this paper, the evolution of the
vortex cores into vortex sheets suggests that the vortex stretching will be bounded
and that flows such as that examined here do not provide a mechanism for the
breakdown of smooth solutions of the Euler equations. The transformation of
cylindrical cores into vortex sheets which we have observed may be of interest in
connection with theories of the inertial range of turbulence, for this evolution
suggests a new scenario for the transfer to small spatial scales of parts of the
vorticity field and for the possibility of rapid removal of this vorticity by the
action of viscosity. This issue is also discussed at greater length below.

The numerical scheme we have employed is a vortex filament method. We are
tackling an inviscid problem with an inviscid scheme. The scheme is inviscid in
the sense that there is no accumulation of numerical diffusion and extremely
small spatial scales can be resolved since the computational elements are La-
grangian and are not tied to fixed, regular positions in space. These two
properties, which permit the calculation of very thin structures in the flow, are
crucial for the success of this investigation.

In the remainder of this paper, we introduce the vortex method we have
implemented and show that it gives a proper discretization of the Euler equations
(in Section 2). In Section 3, we discuss the results of some of the numerical
experiments we carried out. Section 4 contains our conclusions.

2. The Numerical Method

Ideal fluid motion preserves vortex filaments and their circulations. Moreover,
the velocity field is uniquely determined by the distribution of vorticity (because
of incompressibility). Consequently, the evolution of an ideal fluid can be
described in terms of the evolution of its vortex filaments alone.

The algorithm used in the computations described in this paper involves the
discretization of vortex rings into finite numbers of vortex filaments and the
discretization of each filament into a finite number of particles. (See [15] for a
general discussion of three-dimensional vortex methods.) The vorticity is repre-
sented by a finite set of vectors of vorticity located at the midpoints of the
segments which join neighboring particle pairs and of length and orientation
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determined by the separation of the neighboring particles; see [9]. The velocity
contributions at the particle positions due tc thc discrete vorticity field are added
to give the velocity of each particle, and the evolution in time of the coll&tion of
vortex filaments is thus computed.

Before describing in more detail the vortex method we have implemented, we
pause to present the equations of motion for a vortex ring in terms of the vortex
filaments. Our algorithm is a straightforward numerical. apploximation of this
system of equations. We assume for the present discausion that the initial
distribution of vorticity consists of a single vortex ring; the extension to the case
of several vortex rings is obvious. Let B be a two-dimensional disk, which we
identify with a ring cross-section, and let J: B -* R give the vortex strength in
each cross-section. We assume that J has only radial dependence and is zero at
the boundary of B. We parameterize the vortex ring A C R 3 of radius R by the
map X: B × [0, 2w] - A, given by setting

X(b,0) = ((R + b)cos(o),(R + bj)sin(,), b2),

where b = (ba, b2), and assume that the initial vorticity distribution to(., 0) is
given by

w( X(b, 0), 0) = (b)(cos(-O),sin(o), 0).

In this way, the images under X of the "circles" {(b, 0): 0 g 0 21r}, with
b e B fixed, are vortex filaments in the ring.

We denote positions within the initial ring configuration by a e A (these are
our Lagrangian coordinates) and desgribe trajectories of fluid particles by letting
4,(t) denote the position at time t of the fluid particle which at time 0 was
located at the spatial position a. The conservation of circulation implies that the
vorticity ta(t) = o(I'(t),t) is determined from its initial value and the defor-
mation of the fluid through the relation (setting (b, ) X-'(a))

d(.- x) (b,) go(-.x)
(2.1) w.(t) -J(b) ±x =( b , . ) [  (b) R+b ,

see [121. The velocity u(x, t) at spatial position x and time t is given from the
Biot-Savart formula by

(2.2) U(x, t) K(x - da,

where K is the operator xIxI3 X. Making use of (2.1)-(2.2), we can write the
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equations of motion of the ring in the form

(2.3) O(O) = a,
d

(2.4) dt-(,) = f K(*.(t) - Op(t))w,(t) ipf.

The system (2.1), (2.3)-(2.4) is equivalent to Euler's equations.
We discretize the equations of motion (2.1), (2.3)-(2.4) by approximating the

vorticity by Lagrangian finite differences and the integral in (2.4) by the trape-
zoidal rule. Let m > 0 be an integer and set h = 2w/m. We shall refer to two
grids on B x [0, 2w1r of mesh width h. These are the grids ((k,, k2, k3)hI and
{(kl, k2, k 3 + I)h) ranging over the three-tuples of integers (k1, k2, k3) such
that (kI, k2)h e B and 0 = k 3 < m. We denote by {ai} and {d,+}, respectively,
the two sets of grid points, and by (ai = X(&5)) and (a,+ =i X(&+)) the corre-
sponding sets of curvilinear grid points in the initial vortex ring (see Figure 1).

Let x(t) denote our computational approximation to 48 (t). Assume that a,
and a,+, are adjacent grid points along one of the initial discrete filaments and
call a+ the shifted grid point between these two. Then

mjt) = (x,+1 (t) + x,(t)) and Zt(t) = x,+'() - xi () (b)2 (R + bl)h

(where b is the cross-sectional coordinate of the filament in question) are
approximations to 16,+(t) and w.,7(t) (see (2.1)), respectively. Denote by b' the
cross-sectional coordinate of ai. A velocity field ri which approximates u can

# 2V a • X(Vi)
b 2*1

oil
g-- 1. D - -

Figure 1. Dicrt paranmeterization of a vortex ring.
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now be defined by the following discretization of (2.2):

(2.5) f(x, t) - EK.(x - mj(t))C1(t)h 3(R + b),
i

with the summation including all of the grid points. K. is an approximation to K
obtained by the convolution of K with a cutoff function, K, = K * , where

~x) = e- 3 (x/e) and where we use the function

-0,(x) = 4wi if lxi ,

0 if Ixj > 1,

for which the convolution can be carried out explicitly (without need for
a numerical integration). The final factor in (2.5) is due to the transformation
from the cubic to the curvilinear grid and is needed to make the summation a
correct approximation to the integral over A. Observe that, setting ,w(t)--
J(bXx,+1(t) - x,(t))/h, we can rewrite (2.5) in the form

(2.6) g(x, t) - EK,(x - m,(t))t4i(t)h 3.
i

With the above approximation to the velocity assumed, the system of ordinary
differential equations governing the evolution of discrete filaments is given by

(2.7) x,(0) - a!,

(2.8) ) EK.(x,(t) -
j

with i and j ranging over all the grid points. The m, and w, are determined by
the x, as above. The discretization in time of this ordinary differential equation
constitutes our algorithm. This algorithm is a lower-order version of the one
whose convergence was proved in [12], following the works [2] and [7], [8].

In all but the simplest flows, a great amount of vortex stretching occurs, and
in order to resolve the flow adequately, it is necessary to add computation al
elements as the calculation proceeds. At each time step, we check the distances
beween neighboring particles on the discrete fiaments. When a threshold value is
exceeded, we include a new particle between the original pair. This new r .rticle is
placed at the midpoint of the two particles. The nature of the algorithm is such
that the vorticity used in the computation of the velocity can be evaluated as
before. In general, in regions of significant stretching many new particles are
added between two originally neighboring particles. It is in order to obtain a
reamnably accurate interpolation procedure that we have used the algorithm
described above, rather than the higher-order one descrilked in [121.
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Numerical resolution is improved as the number of particles tends to infinity
(h -* 0), the smoothing parameter z tends to zero, and the timestep in the
discretization of the ordinary differential equations tends to zero. The order in
which the limiting procedures, e - 0, h -, 0, are carried out is important. If one
fixes h and lets e tend to zero, the calculations easily become unstable because of
the singularity of the Biot-Savart kernel. The convergence theory requires that the
smoothing parameter should be larger than the original interparticle mesh
spacing. If one sets e = hy, with y < 1, then one can obtain convergence as h
decreases to zero. However, in practice with vortex methods, one usually finds
that for reasonable -,, very small values of h are required for stable calculations,
and that it is too expensive to approach convergence with such a parameter
relationship.

An improved procedure (see [1]) is obtained if one first fixes the smoothing
parameter, and then lets h --, 0. (By this we mean that one finds a sufficiently
small h so that the numerical results have converged; the time step, of course,
must be sufficiently small as well.) One then chooses another smoothing parame-
ter, smaller than the first, and again lets h -- 0, and continues until one's
computational resources are exhausted. Intricate vortex sheet roll-up has been
calculated in this way by Krasny [14J.

We sought to carry out this approach in our calculations. This procedure can
be seen to, be equivalent to solving accurately a sequence of equations parameter-
ized -by e. These equations are

-- + u. - VW = W • V u.,

Ue(X) = fK,(x - y)w(y, t) dy.

We shall show results from a sequence of calculations with successively smaller
values of e. While in our calculations convergence of the double limit has not
been obtained, certain features of the flow persist as the smoothing parameter is
refined, and we are provided with a qualitative picture of the solution which
would be obtained in the limit of the smoothing parameter tending to zero.

By virtue of the procedure which we have described, it is clear that the nature
of the errors due to non-zero values of the smoothing parameter should be
understood. As in the case for the Euler equations, these smoothed equations
have the property that vortex filaments are preserved by the flow evolution. Thus,
the effect of the smoothing is very different from that of diffusive smoothing.
Since the phenomena we are investigating would be destroyed by even tiny
amounts of diffusion, this non-diffuse feature of the approximation is crucial to
the success of our calculations. Furthermore, the non-diffusive character is
present for all e, and the method should provide reliable insight as to the
qualitative features of the solutions of Euler equations, even for relatively large
values af the smoothing parameter.
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Some final comments we would like to make about the numerical algorithm
concern the objections which are sometimes raised that the computational
vorticity field is not divergence-free in the vortex method. First and foremost, one
can answer such objections by observing that numerical algorithms should give
good approximations to the continuous problem; they need not provide exact
solutions of discretized forms of physical laws. Calculations of fluid flows by the
finite element method are not faulted because velocity fields in real fluids are not
affine functions on triangles in space. Secondly, as has been observed by Beale
[41, the curl of the velocity field induced by a collection of vortex elements of the
type considered in this paper is the projection of this vorticity field onto the space
of divergence-free vector fields. Thus, the velocity field induced by our vortex
elements is identical to that induced by a vortex distribution which is
divergence-free.

3. The Numerical Results

As initial conditions, we took two identical, axisymmetric vortex rings. We
studied the evolution of these rings over a short interval of time, though one long
enough for the rings to come together, for the vortex cores to become severely
distorted, and for the rings to begin to pull apart in the direction orthogonal to
that joining the two rings.

The initial distribution of vorticity is determined by the radius PR of the rings,
the cross-sectional radius Pc, the vorticity distribution function J (see Section 2),
the separation ps of the ring centers, and the initial angle of inclination of the
rings to the x, y-plane. We chose the coordinate axes so that the ring centers are
equidistant from the origin on the x-axis, at the positions c, = (p,/ 2, 0,0) and
c-= -c+. The rings were taken to be inclined toward one another by 200.
Qualitatively similar evolution results from initially coplanar rings, but the
interesting interaction occurs sooner when the rings are inclined from the
beginning, and so a higher proportion of the computational labor can be used to
resolve the interaction process. Figure 2 illustrates the initial configuration of the
vortex rings.

We chose the initial cross-sect~on to be uniform, with J the (scaled) character-
istic function of the ring, The scaling was chosen so that the circulation of each
ring is 20. In all of the computations reported here the vortex ring parameters
were taken to be PR - .1, Pc - .02 and Ps = .25. Again, qualitatively similar
evolution is observed when the uniform cores of vorticity are replaced by a more
smoothly varying vorticity distribution.

Some of the features of the evolution of the vortex rings, starting from the
given initial conditions, can be seen in the perspective views of Figures 3(a)-3(d).
These figures show the positions of a few of the 61 filaments which make up each
ring at steps 16, 32, 48 and 64 (the vortex rings would be solid black if all of the
filaments were plotted). The plots are in a frame of reference moving with the
center of mass of the vorticity; one should keep in mind that the rings are
translating downward, even though the rings remain in the center of each frame.
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Figure 2. Initial vortex ring configuration.

These figures were obtained with the parameter 8 = .012 and the number of
computational particles N = 5490 initially and N = 6148 at the final time.

For those readers who are not well acquainted with the ring merger problem,
even the basic features of the flow can be obscure and not easily discernible from
the pictures. A very helpful description can be found in [181. For the benefit of
the reader, we attempt a brief description of the movement of the rings in the
next paragraph.

For an individual ring, the velocity field which it induces upon itself is close
to being a sum of a uniformly downward velocity and a rotation about the core.
Thus, as the rings in our computation are initially inclined, each one has a
component of velocity which induces a translation downward and toward the
other. The effect of one ring is to retard the downward motion of the other,
especially at the nearby side. As the tilt of the rings is increased, the component
of the self-induced velocity in the direction joining the rings is increased, and the
rings approach each other and press together. The velocity field due to the
vorticity in the near edges of the two rings (which are almost tangent to one
another and contain vorticity of opposite sign) is negligible except very near these
edges. The motion induced by the edges upon one another, however, is non-
negligible-each edge imparts an upward component of velocity to the other. In
pressing against one another, the portion of each ring which is nearest to the
other becomes stretched and flattened. This is seen in Figure 3(d) which is the
ring at the final time of the computation.

Of primary interest, as we discuss in the next section, is the structure of the
core of the rings in the region where the rings come closest together. In Figures
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Figure 3. Perspective Views of Vortex Rings. Rows (A)-(D) are the vortex ring configurations
at steps 16, 32, 48, and 64, with time steps of size .25 X i0 -, second-order Runge-Kutta time
integration, and 8-= .012. The first column is a top view of the rings; the view is along the z-axis. The
second column is a corner view of the rings, along the vector (1,1, ). The third column is a view
along the x-axis; the far ring is deleted from the plot for the sake of clarity.

4(a)-4(d) cross-sectional views of the rings at the times corresponding to those in
Figures 3(a)-3(d) are presented. Here the intersections of the computational
filaments with the x, z-plane are plotted. As is clear from these piots there is
significant flattening of the vortex cores as they come close together. The
incompressibility of the flow and the diminishment of the core sizes implies that a
great amount of stretching of the vorticity, in the directional normal to the
cross-sections, is taking place.

In order to quantify the flattening we computed the average of the x-coordi-
nate separation of the points which make up Figure 4. This gives an estimate of
how close the two cross-sections are pushed together. The ratio of this average
distance of separation to the original average separation is plotted as the solid
line in Figure 5(a). The cross-sectional area was measured, and the dashed line in

31A)
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Figure 4. Vortex core cross-sections. (A)-Step 16; (B)-Step 32; (C)-Step 48; (D)-Step 64:
8= .012.

Figure 5(a) is the ratio of the cross-sectional area of the tube to the original
cross-sectional area. The decrease in cross-sectional area indicates that a large
amount of stretching of the tube has occurred. The magnitude of this stretching is
indicated in Figure 5(b) where we plot the maximum stretching and the average
stretching for the vorticity on the cross-sectional slice. The implications of these
results will be discussed in the next section, but we now address the establish-
ment of the reliability of the computed results.

In our computations we chose h sufficiently small so that for the given 8 the
changes in the solution were negligible. Of more importance are the changes in
the solution with respect to the smoothing parameter B. In order to assess this we
computed the evolution of the rings with several different values of the smoothing
parameter and compared the results.

We focus our attention now on three different values, 8 = .015, .012, and
.010. Our first observation was that the overall development of the rings was
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Figure 5(a). relative x location of vortex core; ---- : relative core cross-sectional area.

essentially independent of 8, i.e., views of the type in Figures 3(a)-3(d) do not
differ substantially among the different values of 8. Significant differences,
however, are found in the behavior of the core cross-section at the points where
the two rings come closest together. In Figure 6 we plot the cross-sections of the
filaments with the x, z-plane at steps 16, 32, 48 and 64 for the three different
values of 8. The number of particles N at the beginning of the computation was
the same-3904. The results for a given value of 8 are in a single column, and the
size of 8 decreases as one goes left to right. It is clear from these pictures that the
solutions have not converged with respect to 8, but a trend can be clearly seen.

, Notably, there is tremendous flattening at all values of 8 and the major difference
is in the structure at the top of the cross-section. As 8 decreases, this structure
appears to become more flattened.

20

I0

/ (b)

0 20 40 60 80

Step Number

Figure 5(b). - : Maximum relative stretching; ---- ; average relative stretching.
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Figure 6. Vortex core cross-sections. (A): e - .015, Steps 16, 32, 48, 64; (B): e = .012, Steps 16,
32, 48, 64; (C): e = .010, Steps 16, 32, 48, 64.

The behavior of the average cross-sectional separation is plotted in Figure 7.
For the early part of the computation, the results agree rather well, while near the
end they differ. For the three values shown, the figures indicate that the
separation distances are decreasing as 6 is decreased. A similar trend is observed
in the cross-sectional area.

In our computational results we see that there is tremendous deformation of
the core in the region in which the two rings press together. We have not
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Figure 7. - - -: relative core distance e - .015; _: relative core distance E = .012; - -. -
relative core distance e - .010.

computed solutions which are completely independent of 8, but the results
suggest that we have captured the essential features of the solutions. In fact, the
deformation which we observe appears to be more pronounced as the smoothing
parameter is reduced.

4. Implications for Fluid Mechanics

The vortex ring interaction which we have investigated, and described in this
paper, is a particular example of an important class of vortex flows. Although theinitial conditions appear to be very special, the striking core deformations which
we have observed are relevant to other investigations of vortex dynamics. In this
section we discuss the implications of our results concerning questions about the
appearance of singularities in finite time, the vortex dynamics of the inertial
range, and the nature of ring merger or reconnection in viscous flows.

Three-dimensional vortex dynamics seems to be characterized, in part, by the
pairing of anti-parallel pieces of vortex tubes. This phenomenon has been
observed in numerical experiments (see 119D and can be expected in the pres-
ence of substantial vortex stretching from the invariance of the energy
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f0w(x) •(y)Alx - yJ dxdy (here w is the vorticity and the integration is over all
space). In the pairing process, substantial stretching and very close approach of
the pair of tubes occur.

The authors of 1191 and [20] presented evidence which, they argued, suggests
that the stretching which takes place when pairs of vortex tubes come together
may become infinite after a short time, leading to singularities in solutions of the
Euler equations (or even the Navier-Stokes equations). In the calculations pre-
sented by these authors, two oppositely signed vortex filaments come together,
"pair", and translate rapidly. This translation induces local stretching which
further enhances the velocity of translation and consequent stretching, and the
stretching becomes infinite after a short time. However, the vortex cores are
resolved by single fiaments and so by necessity these cores are always circular.
As we see from our numerical results, notably Figures 4(c)-4(d), the core shapes
differ dramatically from circles. This fact has important consequences for the
possible development of singularities.

To understand the relevance of the shapes of the cores, imagine a model in
which two identical tubes of vorticity (by which we mean a bundle of filaments),
of opposite circulation, travel towards each other, each being moved by an
externally imposed velocity (which in the case of our problem is due to the vortex
ring configurations). As they begin to approach one another, each acts on the
other as well. Take the tubes to be orthogonal to the x, z-plane at the point where
they come closest together, with the cross-sectional centers of each on opposite
sides of the origin along the x-axis. The amplification of the vorticity due to
stretching has minimal immediate effect on the dynamics of the cores, because
the circulation in the x, z-plane is independent of the stretching. However, the
compression in the plone, which of necessity accompanies stretching (because of
incompressibility), has a major effect on the velocities induced by the cores. If
there is compression in the z-direction as well as in the x-direction, then as the
cores approach each other, the induced velocities increase rapidly, being of order
Ix1- 1, and one could expect catastrophic behavior. This is the beginning of the
approach to singularity seen in [19]. However, if there is contraction only in
the x-direction, then the cores begin to resemble vortex sheets, and the greater
the flattening, the weaker are the sheet strengths. The velocities induced by vortex
sheets on each other remain bounded. Our results show that, indeed, a severe
flattening takes place-the cores are smashed into sheets and in effect lose a
dimension. Thus, the capability of the vortex tubes to feed on each other
nonlinearly until blow-up seems not to be present in our problem. A necessary
condition for a singularity to occur is an infinite stretching of a part of a vortex
line; see [5]. Of course, we do not claim that the flow is nonsingular for all time,
only that the kind of singularity described earlier does not seem to occur here.
(The description of the tubes coming together we have given assumes that they
are of identical strength and symmetrically placed with respect to one another,
which is also the assumption made in the numerical calculations of others to
which we have referred. It is important to observe that, although we have
presumably excluded the generic cases in this way, we have considered a more
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singular situation, for if the cores are not of the same strength, then the weaker
one will begin to wrap around the stronger one, resulting in even more two-
dimensional core distortion as well as increased vorticity cancellation, and thus
less wild stretching. Also, as indicated by the numerical calculations of Melander
and Zabusky (161 on the motion of anti-parallel vortex tubes, significant core
distortion and rapid cancellation can be expected if the rings are not in a
symmetric configuration.)

It should be mentioned that Pumir and Kerr [17] have previously shown (at
finite Reynolds number) that some deformation of the cores takes place in the
flow, raising questions about the blow-up picture, but the deformation was
sufficiently mild as to leave open the question of how singular the induced
velocities may be becoming.

The core deformation which we have observed may also be of considerable
interest in connection with certain aspects of turbulence theory. Chorin [11] has
pointed out that folding and pairing of vortex lines is necessary, in the presence
of stretching, in order that energy be conserved, and has suggested that a study of
the kinds of folding and pairing which may occur is of great value to the
understanding of three-dimensional vortex dynamics and the inertial range of
turbulence. The passage to smaller scales in this picture is brought about by the
stretching of the vortex lines. Our work reveals another, contemporaneous,
process for generation of small spatial scales-vortex tubes can squash into
vortex sheets as they stretch, and in this way bring about much smaller spatial
scales of vorticity than would be predicted by the value of the rate of stretching
of the vortex filaments alone.

In order to study vortex dynamics and the passage to small scales, without
having to carry out the impossible task of doing accurate, very high Reynolds
number, fairly long time three-dimensional calculations, Chorin [11] has made a
lattice model (or "cartoon," to use Chorin's term) of vortex dynamics in order to
study energy cascades and the inertial range of turbulence. It appears to us that a
model of vortex core flattening could be reasonably incorporated into Chorin's
lattice model.

The final issue we address is the nature of the vortex ring interaction in the
presence of a small amount of viscosity. The viscous flow is of great current
interest, principally because of the beautiful experiments which have been carried
out showing what is called vortex ring reconnection or merger (beginning with
Kambe and Takao [13] and most recently by Schatzle [18D. Our calculations have
been carried out at infinite Reynolds number and the question of the relation
between our results and those of slightly viscous flows is of interest.

As long as the inviscid flow is smooth (as appears to be the case here),
solutions of the Navier-Stokes equations converge to the inviscid flow as the
viscosity tends to zero; see [6]. It is clear that while the two vortex rings are well
apart from one another, the effect of a small amount of viscosity will be
neghible. If one considers a cylindrical tube of vorticity with the same circula-
tion and diameter as the tubes which make up the rings in our computation, then
above Reynolds number 6,500 the vorticity diffuses a mean distance less than one
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peent of the core diameter by time step 64 (the final time in our computation).
What is of more interest is when the rings are close together. As our calculations
reveal (most notably in Figure 4(d)), portions of oppositely signed vorticity get
flattened together and even quite small amounts of viscosity will lead to a
cancellation of the vorticity. This explains why reconnection occurs at a rapid
rate for the viscous problem, even at high Reynolds numbers. The tendency for
flatiening has been observed in the viscous calculations in [17].

Also related to the issue of the approximation of the inviscid flow by a viscous
one is the nature of the merger process. Since vortex lines are not broken for the
inviscid flows merger cannot occur. In the viscous case it does occur and,
therefore, there has been some controversy about the nature of the inviscid limit.
Above some Reynolds number is there no reconnection? Or is the limit discontin-
uous (in the sense of vortex reconnection) as the Reynolds number tends to
infinity? One source of this controversy has been the fact that reconnection has
not been well defined. For all arbitrarily small positive times and values of
viscosity, there exist vortex loops which cross the plane of symmetry (the
y, z-plane in our calculation). A proper definition of reconnection should specify
some further condition on such loops. Let us denote by x(a, t) the position at
time t of the fluid particle which at time 0 was located at position a. One could
define the time of reconnection to be the first time t such that for some a which
lies in one of the initial vortex rings, the vortex line through x(a, t) crosses the
plane of symmetry. One could also ask for the first time T when, say, one half of
the original vorticity-carrying part of the fluid lies on such vortex lines. With
these definitions, it is clear that there exists a critical Reynolds number RT such
that in [0, T), solutions for Reynolds numbers R > RT experience no reconnec-
tion, while those corresponding to R < RT do. Thus reconnection does not occur
above a finite Reynolds number, and the limit is nonsingular.

In summary, we have presented the results of a computation of the interac-
tion of two vortex rings. This problem appears to be a good model of more
general interactions of vortex tubes. We have investigated the solution of the
inviscid equations, a problem which to our knowledge has not previously been
attempted with fully three-dimensional vortex cores. We have seen that the cores
flatten severely as they smash into each other. Although a tremendous increase in
the magnitude of vorticity is observed, the computational evidence shows that
due to the evolution of the vorticity into sheets, this does not lead to large
velocities and hence a catastrophic intensification of vorticity. In fact, the
evidence suggests that the velocity remains bounded and the magnitude of the
vorticity only grows linearly with time. There is also evidence of a new process
for the generation of small spatial scales which may be of importance in the
inertial range of turbulence.
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